
Fair-Universe Toy-Challenge Report

Mathis REYMOND,Stefano BAVARO, Jacobo RUIZ, Shah Fahad
HOSSAIN

March 2023

Challenge page - https://www.codabench.org/competitions/565/?secret_
key=35329465-c378-4483-9564-8a4a4bf617ba#/pages-tab

1 Background and motivation

High energy physicists at CERN use simulations in order to reproduce colli-
sions that occurs in the LHC. Collisions between particles create thousands of
smaller particles. Once they developed a theory which predicts the existence
of a new particle, physicists run these simulations and seek for evidences of the
new particle. To do so, they classify all the particles resulting from a colli-
sion between background particles (uninteresting ones that they already know)
and signal particles (the ones they are interested in). This is why high-energy
physicists are working increasingly closely with machine learning scientists. To
perform this classifications task there are tens of available features about each
particle (such as its speed, its energy or some angles measurements). However,
the simulations are prone to systematic biases and so it is for the data used for
classification, which makes the task harder. Thus, a big challenge is to remove
this biases from the data in order to improve the accuracy of classification. The
Fair Universe challenge is a toy-example for this problem. Instead of working in
a high-dimensional feature space, we represent the particles as 2D points that
belongs either to signal or background class. The aim is to build a model that
classifies them correctly. We represent the biases that affects the particles as a
translations that affects all the points (with no regard to their class).

2 Data and task description

2.1 Task

In this challenge, in order to better capture physicists problem, we do not ask
contestants to solve one task, but several ones. We provide several training sets.
Each training set corresponds to a specific task we want contestants to tackle,

1

https://www.codabench.org/competitions/565/?secret_key=35329465-c378-4483-9564-8a4a4bf617ba#/pages-tab
https://www.codabench.org/competitions/565/?secret_key=35329465-c378-4483-9564-8a4a4bf617ba#/pages-tab

that is the points have been generated in a specific way. The points in training
sets have no bias. For each training set, we provide several test sets that have
been generated in the same way, but the points in these test sets suffer from
bias. We want contestants to tackle all the tasks and for each of them, to train a
model able to overcome the bias and classify the points no matter the direction
and magnitude of the translation.

2.2 Parameters

Before describing the datasets provided, let’s introduce the parameters used
to generate them. Signal and background points are generated independently
using 2D-Gaussian distributions.

Figure 1: Illustration of all the parameters that defines a dataset’s task. Each
filled circle represents a Gaussian distribution. The dotted circle is centered in
(0,0) and indicates the center of non-biased distributions.

Here are the parameters specifications. See Figure 1 for illustration.

• ps ∈]0, 0.5] : the proportion of signal points

• σs ∈]0, 1] : standard deviation of signal distribution

• θ ∈ [0, 2π[: angle that indicates the direction of distributions alignment

• l ∈]0,∞[: distance between distribution’s centers

• α ∈ [0, 2π[: angle that indicates the direction of the translation when
added to θ

2

• z ∈ [0, 5] : nuisance value, magnitude of the translation

Background distribution is always centered at (0, 0) and its standard deviation
is always set to 1.

1. For each train set, we fix the parameters ps, σs, θ, l and we generate 1000
points.

2. For each test set, we fix the parameters ps, σs, θ, l, we generate 1000 points.
Then we fix α and z and we apply to all the generated points the trans-
lation in the direction θ + α with magnitude z (in polar coordinates).

2.2.1 Mathematical formalism

Here is a more detailed mathematical formalism for the way we generate the
data. See again Figure 1 for illustration.

Let a task be a tuple (ps, σs, θ, l). A context is a tuple (σ, θ, l). Given a context
C = (σ, θ, l), a point generated in the context C is the realization of a random
variable that follows a bivariate Gaussian law of parameters (l cos θ, l sin θ) and[
σ 0
0 σ

]
.

Given θ, a nuisance direction α and a nuisance magnitude z, let

τθ,α,z : (x̂1, x̂2) ∈ R2 7→ (x1, x2) := (x̂1 + z cos(θ + α), x̂2 + z sin(θ + α)).

Given a context C = (σ, θ, l), a nuisance direction α, a nuisance value z and a
label c ∈ {0, 1}, a c-labelled event for z in the direction α in the context C is
a tuple (x1, x2, c), where (x1, x2) is the image by τθ,α,z of a point generated in
the context of C.
Given a task T = (ps, σs, θ, l), a nuisance direction α and a nuisance value z,
a dataset for T plagued by α and z is a set containing 1000ps 1-labelled events
for z in the direction α in the context (σs, θ, l) and 1000(1−p) 0-labelled events

for z in the direction α in the context

([
1 0
0 1

]
, θ, 0

)
.

For each labelled event (x1, x2, c), we define its associated event (x1, x2).
The aim of this challenge is, for any given task T , to build a machine learning
model that most accurately predicts the class of events no matter what nuisance
direction and value were used to generate them. To do so, contestants are
provided one train dataset for T plagued by 0 and 0.

2.3 Data

As it would have been impossible to provide all possible combinations of the
parameters presented in the previous section due to combinatorial explosion,
we decided to define 16 representative tasks, creating 1 train dataset and 4 test
datasets with different nuisance values for each. We kept fixed the number of

3

points per dataset to 1000, the center of the background distribution to (0, 0)
and its standard deviation to 1. Then the train sets are generated with 16
combinations of these parameters values :

• ps ∈ {0.05, 0.5}

• σs ∈ {0.1, 1}

• θ ∈ {0, π
4 }

• l ∈ {1, 3}

• (z, α) = 0

And the test sets are generated with 64 combinations of these parameters values
:

• ps ∈ {0.05, 0.5}

• σs ∈ {0.1, 1}

• θ ∈ {0, π
4 }

• l ∈ {1, 3}

• (z, α) ∈ {(0, 0), (5, 0), (5, π
4), (5,

π
2)}

2.4 Metric

The metric used to evaluate the obtained result is the ROC AUC. In this section
we give a comprehensive explanation of it.

2.4.1 ROC Curve

An ROC (Receiver Operating Characteristic) curve is a graph showing the per-
formance of a classification model at all classification thresholds. This curve
plots two parameters:

• True Positive Rate (TPR) or Recall:

TPR =
TP

TP + FN

• False Positive Rate (FPR):

FPR =
FP

FP + TN

A ROC curve plots TPR vs. FPR at different classification thresholds. Low-
ering the classification threshold classifies more items as positive, thus increasing
both False Positives and True Positives. Figure 2 shows a typical ROC curve.

4

Figure 2: ROC Curve showing TPR
vs. FPR at different classification
thresholds

Figure 3: Area under the previous
ROC Curve

2.4.2 ROC AUC

ROC AUC stands for ”Area under the ROC Curve”. That is, AUC measures
the entire two-dimensional area underneath the entire ROC curve (think integral
calculus) from (0,0) to (1,1). See 3.

AUC provides an aggregate measure of performance across all possible clas-
sification thresholds. One way of interpreting AUC is as the probability that the
model ranks a random positive example more highly than a random negative
example. AUC ranges in value from 0 to 1. A model whose predictions are
100% wrong has an AUC of 0.0; one whose predictions are 100% correct has an
AUC of 1.0. See [1] for more explanation.

3 Challenge Design

The problem is a binary (two classes) classification problem. Each sample (a
2D point) is characterized by its coordinates x1 and x2 (2 features). You must
predict the points category: signal or background. We have given for training
a data matrix X train of dimension num training samples x 2 (2 features, x1
and x2) and an array y train of labels of dimension num training samples. The
participants must train a model which predicts the labels for two test matrices
X valid and X test.

3.1 Evaluation

The challenge is designed into two phases.

Phase 1-Development Phase: We provide the participants with labeled
training data and unlabeled validation and test data. Make predictions for both
datasets. However, the participants will receive feed-back on your performance
on the validation set only. The performance of their LAST submission will be

5

displayed on the leaderboard.

Phase 2-Final Phase: The participants do not need to do anything. Their
last submission of phase 1 will be automatically forwarded. Their performance
on the test set will appear on the leaderboard when the organizers finish check-
ing the submissions.

This sample competition allows you to submit:
1. Only prediction results (no code).

3.2 Rules

1. Submissions must be made before the end of phase 1.
2. You may submit 5 submissions every day and 100 in total.

4 Baseline methods

4.1 Naive baselines

We came up with 4 naive baselines :

1. Constant prediction. We systematically classify the points as background.

2. Naive Bayes. We train a naive Bayes classifier on a train set. This method
doesn’t take the bias into account.

3. Data augmentation. Given a train set and a test set, we calculate the
average coordinates of each set to retrieve the direction and magnitude of
the nuisance. Then we generate an extra dataset using the training points
translated in the same direction but with a smaller magnitude than the
test set. Finally, we train a naive Bayes classifier using both the train set
and the extra dataset.

4. Statistical preprocessing. We train a naive Bayes classifier on a train
set. We calculate its average coordinates. Then, for a given test set, we
calculate its average coordinates and translate all its points to center it
like the train set. Then we classify the translated test points with the
naive Bayes classifier. Note that this method is actually some kind of
”hack” for the competition since it does not use machine learning to deal
with bias but simply removes it using a statistical approximation.

4.2 Manifold Tangent Classifier (MTC)

The MTC is a pipeline: we first extract information from our data with an
extractor and we then use a classification algorithm that uses this information
in order to be more robust to small data variations.
All the credits go to publications [4]. This method uses a modified version of a

6

classical 2 layered neural network for binary classification.
The only thing modified is the back-propagation algorithm of the network, it is
modified by adding a new regularization weight to the back-propagation equa-
tion. This new regularization weight is obtained as follows:
We use an Auto-Encoder (you can think of it as a feature extractor for now) to
extract ”tangent vectors” at every data point x. These tangents basically en-
code information about how this data point x in particular may vary (by some
basic transformation like a translation or rotation). Then we use these learnt
tangents in the regularization term to make the back-propagation algorithm
more insensitive to data variance.
This method is interesting as in this challenge the variance is the bias intro-
duced to the particle 2D coordinates. Therefore an algorithm that is insensitive
to small variances is ideal. See the method’s description for more in depth un-
derstanding.
Please refer to appendix A for more details.

4.3 Domain Adversarial Neural Networks

The second method we decided to consider as a baseline is the Domain Ad-
versarial Neural Network. It is inspired on the well-established theory in the
field of domain adaptation (the process of training a model on data from one
source domain, and adapting or transferring the model to work well on a differ-
ent target domain) suggesting that, for effective domain transfer to be achieved,
predictions must be made based on features that cannot discriminate between
the training (source) and test (target) domains. In the context of this problem,
the domain transfer is to be achieved in order to still perform a good classi-
fication when data at training and test time come from similar but different
distributions (with a nuisance value \ bias applied). In this method, this idea
is implemented using a neural network architecture, trained on labeled data
from the source domain and unlabeled data from the target domain. As the
training progresses, the approach promotes the emergence of features that are
(i) discriminative for the main learning task on the source domain and (ii) indis-
criminate with respect to the shift between the domains. The method is based
on the formulation defined in [2] and the code we used to implement it is an
adaptation of what contained in [3].
See appendix B for more details.

5 Results

In this section we show the test results of our 6 baselines. See Figure 4. For each
parameter, we sort the values between easy (green font), medium (orange font)
and hard (red font). For example, the farther signal and background clusters
are, the easier is the classification task. Thus, l = 3.0 is the easy case and
l = 1.0 is the hard one.
For a given baseline, for a specific value of a specific parameter, we evaluate the

7

baseline on all the test sets where this parameter is set to this value. Then we
average the resulting scores. For example, the number in the row ”DANN,AUC
score” and the column ”l, easy”, we averaged all the AUC scores of the DANN
on the datasets where l was set to 3.0.
Moreover, we had expectations on the results. To show that we expected a
baseline to score equally, better or worse on an easy value than on a hard
value of a given parameter, we put a ”=”, ”¿” or a ”¡” symbol respectively in
the corresponding prediction row. For example, we expected the naive Bayes
classifier to perform better on datasets where z = 0 (no bias) than on those
where z = 5 ; thus, we put a ”¿” symbol in the row ”Naive Bayes Classifier,
Prediction” and column ”z, easy”.
Finally, we use green background in predictions rows if the AUC score results
match our expectations, and red background otherwise. For example, naive
Bayes classifier has a greater AUC score in average when z = 0 than when
z = 5, this match our expectation, thus the box at row ”Naive Bayes Classifier,
Prediction” and column ”z, easy” has green background. Note that there is a
0.05 tolerance for ”=” predictions.

Figure 4: Results

We can draw some conclusions. Firstly, our implementation of the tangent
method sometimes performs very poorly (average AUC score under 0.5). We
didn’t manage to find what cause these performance drops and it needs further
investigation.
Furthermore, we were wrongly expecting the naive Bayes classifier and the data
augmentation method to perform better with small values of σs. We presume
the contrary happens because naive Bayes classifier draw wider signal regions
when σs is large, making it more compliant to bias.

8

6 Conclusions and future work

In conclusion, the Fair-Universe Toy-Challenge provide a valuable opportunity
for participants to apply their knowledge of machine learning to help solving
a real-world problem. Our 2 elaborated baselines showcased the potential of
AI in advancing particle physics research and provided insights into the current
limitations of existing classification methods.

There are several directions to further explore to improve this competition.

1. Try to prevent from the statistical preprocessing ”hack”. One solution
might be to define a fixed window for each task and, for each dataset
associated with this task, to provide only the points that lye inside this
window. Doing this, the statistical approximation of the bias would be-
come harder and less accurate.

2. Increase the number of feature. Use more complex data, closer to physi-
cists problem.

7 Bibliography

References

[1] “Classification: courbe ROC et AUC”. In: (Apr. 2022). url: %5Curl %

7Bhttps://developers.google.com/machine-learning/crash-course/

classification/roc-and-auc?hl=fr%7D.

[2] Yaroslav Ganin et al. “Domain-adversarial training of neural networks”.
In: The journal of machine learning research 17.1 (2016), pp. 2096–2030.

[3] Benjamin Planche and Eliot Andres. Hands-On Computer Vision with Ten-
sorFlow 2: Leverage deep learning to create powerful image processing apps
with TensorFlow 2.0 and Keras. https://github.com/wikibook/dl-
vision/blob/master/Chapter07/ch7_nb5_train_a_simple_domain_

adversarial_network_(dann).ipynb. Packt Publishing Ltd, 2019.

[4] Patrice Y. Simard et al. “Transformation Invariance in Pattern Recognition
– Tangent Distance and Tangent Propagation”. In: Neural Networks: Tricks
of the Trade: Second Edition. Ed. by Grégoire Montavon, Geneviève B. Orr,
and Klaus-Robert Müller. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 235–269. isbn: 978-3-642-35289-8. doi: 10.1007/978-3-642-
35289-8_17. url: https://doi.org/10.1007/978-3-642-35289-8_17.

9

%5Curl%7Bhttps://developers.google.com/machine-learning/crash-course/classification/roc-and-auc?hl=fr%7D
%5Curl%7Bhttps://developers.google.com/machine-learning/crash-course/classification/roc-and-auc?hl=fr%7D
%5Curl%7Bhttps://developers.google.com/machine-learning/crash-course/classification/roc-and-auc?hl=fr%7D
https://github.com/wikibook/dl-vision/blob/master/Chapter07/ch7_nb5_train_a_simple_domain_adversarial_network_(dann).ipynb
https://github.com/wikibook/dl-vision/blob/master/Chapter07/ch7_nb5_train_a_simple_domain_adversarial_network_(dann).ipynb
https://github.com/wikibook/dl-vision/blob/master/Chapter07/ch7_nb5_train_a_simple_domain_adversarial_network_(dann).ipynb
https://doi.org/10.1007/978-3-642-35289-8_17
https://doi.org/10.1007/978-3-642-35289-8_17
https://doi.org/10.1007/978-3-642-35289-8_17

Figure 5: Illustration of an Auto-
Encoder’s architecture. Figure 6: Mappings.

A MTC in-depth explanation

A.1 Contractive-Auto-Encoder (CAE) - the information
extractor

Let’s first understand what an Auto-encoder (AE) is:
First of all it is important to understand that it is a non-linear dimensionality
reduction technique. It is an Artificial Neural Network and its architecture can
be summarized in fig 5.

Now let’s understand it:
Let’s consider the dataset D = {x1, ..., xn}. Examples xi ∈ Rm are i.i.d samples
from an unknown distribution.

An AE It learns an encoder function h that maps an input x ∈ Rd to a hidden
representation h(x) ∈ Rk with k ≤ m. We have: B ⊂ Rk and D ⊂ Rm.

The AE jointly learns a decoder function g that maps h back to the input
space as r = g(h(x)) the reconstruction of x. See figure 6 for an intuitive un-
derstanding of these functions.
The encoder and decoder’s parameters θ are learned by stochastic gradient de-
scent to minimize the average reconstruction error L(x, g(h(x)) for the examples
in the training set. The objective function of the AE is therefore:

JAE(θ) =
∑
x∈D

L(x, g(h(x)))

Therefore an AutoEncoder is an interesting tool for reconstructing data from
an unknown distribution.

10

It is expected that with respect to small changes of training data points,
the autoencoder should encode very similar values. For instance in our problem
we would like to have an encoder that encodes very similar values for a signal
particle even if it is slightly rotated.

To fulfill this idea Contractive Auto-encoder (CAE) could be applied [1]. The
CAE penalizes sensitivity of f(x) to the inputs by L2 regularization term which
is calculated as the squared Frobenius norm of the Jacobian for the encoder
function f :

J(x) =
∂f

∂x
The cost function of CAE is defined as:

JCAE(θ) =
∑
x∈D

L(x, g(h(x))) + λ ∥J(x)∥2

Here θ is a set of the encoder and decoder parameters and λ is the non negative
weight that controls the effect of penalizing the Jacobian’s norm.

Now we have the desired Auto Encoder, one that encodes points to a similar
value even if they have suffered small variances. The encoder’s insensitivity to
small variance is extremely interesting as we want to have a similar property in
our neural network binary classifier.

Now we will study how to harness the information that the CAE extracts
while learning how to reconstruct data even in the presence of variance. What
interests us is the information that the encoder has learnt from the data that
allows it to encode similar values for a data point x and a data point x’ such
that x′ = t(x) , t being a transformation such as a translation or rotation.

A.2 Tangent vectors - information extracted

From [1] we learn that the encoder function gives us information about the
variance of each datapoint. This information is encoded in the ”chart” of each
data point.

Let’s first understand the vocabulary (see [2] for mathematical definitions):

Manifold: a space (or set) where we can locally (meaning close to a point,
but not everywhere) assign a continuous mapping to the reals (in some dimen-
sion), with a continuous inverse. In our case we have a manifold that contains
all the training data points

Tangent bundle of a manifold M: The tangent bundle of a differential
manifold M is a collection of tangent planes at all points on the manifold M.
Every tangent plane has its own chart which is defined as the tangent plane’s
coordinate system.

we extract a set of basis vectors for the local tangent space at each training
point from the Contractive Auto-Encoder’s learned parameters.

11

This is obtained with a Singular Value Decomposition (SVD) of the Jacobian
of the encoder that maps each input to its learned representation:

Based on the hypothesis stated at the begining of [1], we then adopt the
“generic prior” that class labels are likely to be insensitive to most directions
within these local tangent spaces (ex: small translations, rotations or scalings
usually do not change the particle’s class).

A.3 CAE-Based tangent propagation - the classification
algorithm

We can also leverage the extracted local charts when training a neural network.
Following the tangent propagation approach of Simard et al. (1992), but ex-
ploiting our learned tangents, we encourage the output o of a neural network
classifier to be insensitive to variations in the directions of the local chart of x
by adding the following penalty to its supervised objective function:

B DANN in-depth explanation

B.1 Method description

The formal framework is the following: we consider classification tasks where
X is the input space and Y = {0, 1,..., L − 1 } is the set of L possible labels.
Moreover, we have two different distributions over X×Y , called the source
domain Ds and the target domain Dt. An unsupervised domain adaptation
learning algorithm is then provided with a labeled source sample S drawn i.i.d.
from Ds and an unlabeled target sample T drawn i.i.d. from DX

t , where DX
t is

the marginal distribution of Dt over X,

S = {xi, yi}ni=1 ∼ (Ds)
n ; T = {xi}Ni=n+1 ∼ (DX

t)n
′

with N = n + n′ being the total number of samples. The goal of the learning
algorithm is to build a classifier η : X −→ Y with a low target risk

RDt
(η) = Pr(x,y)∼(Dt) (η(x) ̸= y)

while having no information about the labels of Dt.
To describe the Domain Adversarial Neural Network (DANN) architechture,
we define the following formulation. Let Gf (·; θf) be the D-dimensional neural
network feature extractor, with parameters θf . Also, let Gy (·; θy) be the part of
DANN that computes the network’s label prediction output, with parameters θy,
while Gd (·; θd) finally corresponds to the computation of the domain prediction
output of the network, with parameters θd. We will note the prediction loss and
the domain loss respectively by:

Li
y(θf , θy) = Ly(Gy(Gf (xi; θf); θy), yi) (1)

Li
d(θf , θd) = Ld(Gd(Gf (xi; θf); θd), di) (2)

12

where xi is a single datapoint, yi is the corresponding class and di is the corre-
sponding domain.
Then, training the DANN consists in optimizing

E(θf , θy, θd) =
1

n

n∑
i=1

Li
y(θf , θy) − λ

(
1

n

n∑
i=1

Li
d(θf , θd) +

1

n′

N∑
i=n+1

Li
d(θf , θd)

)
(3)

by finding the saddle point θ̂f , θ̂y, θ̂d such that

(θ̂f , θ̂y) = argmin
θf ,θy

E(θf , θy, θ̂d) (4)

θ̂d = argmax
θd

E(θ̂f , θ̂y, θd) (5)

A saddle point as defined can be found as a stationary point of the following
gradient updates:

θf ←− θf − µ

(
∂Li

y

∂θf
− λ

∂Li
d

∂θf

)
(6)

θy ←− θy − µ
∂Li

y

∂θy
(7)

θd ←− θd − µλ
∂Li

d

∂θd
(8)

where µ is the learning rate. We use stochastic estimates of these gradients, by
sampling examples from the data set.
The updates of Equations (6-8) are very similar to stochastic gradient descent
(SGD) updates for a feed-forward deep model that comprises feature extractor
fed into the label predictor and into the domain classifier (with loss weighted by
λ). The important aspect to notice is in Equation (6): the gradients from the
class and domain predictors are subtracted, instead of being summed, which is
an important difference as otherwise it would try to make features dissimilar
across domains in order to minimize the domain classification loss. Such a reduc-
tion can be accomplished by introducing a special gradient reversal layer (GRL),
that has no parameters associated with it: during the forward propagation, the
GRL acts as an identity transformation, while during the backpropagation how-
ever, the GRL takes the gradient from the subsequent level and changes its sign,
i.e., multiplies it by −1, before passing it to the preceding layer. The layer re-
quires no parameter update. The GRL as defined above is inserted between the
feature extractor Gf and the domain classifier Gd, resulting in the architecture
depicted in Figure 7. As the backpropagation process passes through the GRL,
the partial derivatives of the loss that is downstream the GRL (i.e., Ld) w.r.t.
the layer parameters that are upstream the GRL (i.e., θf) get multiplied by
−1. Therefore, running SGD in the resulting model implements the updates of
Equations (6-8) and converges to a saddle point of Equation (3).

13

The proposed DANN architecture is more intuitive by looking at Figure 7.
It indeed includes a deep feature extractor (green) and a deep label predictor
(blue), which together form a standard feed-forward architecture. Unsupervised
domain adaptation is achieved by adding a domain classifier (red) connected to
the feature extractor via a gradient reversal layer that multiplies the gradient by
a certain negative constant during the back-propagation-based training. Other-
wise, the training proceeds standardly and minimizes the label prediction loss
(for source examples) and the domain classification loss (for all samples). Gra-
dient reversal ensures that the feature distributions over the two domains are
made similar (as indistinguishable as possible for the domain classifier), thus
resulting in the domain-invariant features.

Figure 7: Representation of the Domain Adversarial Neural Network

14

	Background and motivation
	Data and task description
	Task
	Parameters
	Mathematical formalism

	Data
	Metric
	ROC Curve
	ROC AUC

	Challenge Design
	Evaluation
	Rules

	Baseline methods
	Naive baselines
	Manifold Tangent Classifier (MTC)
	Domain Adversarial Neural Networks

	Results
	Conclusions and future work
	Bibliography
	MTC in-depth explanation
	Contractive-Auto-Encoder (CAE) - the information extractor
	Tangent vectors - information extracted
	CAE-Based tangent propagation - the classification algorithm

	DANN in-depth explanation
	Method description

