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1 Introduction and contributions

The article at hand focuses on reviewing the current literature regarding the use of Graph Signal
Processing (GSP) methods applied to brain graphs obtained from functional imaging techniques.
Within this framework, graph representations illustrate brain regions as nodes and depict con-
nections—be they functional or structural—as edges. This approach, viewing the brain through
graphs, holds significance in connectomics and the broader field of network neuroscience. It facil-
itates the correlation between structural neural connections and the functional connectivity, even
extending to behavioral observations.

Authors introduce a Fourier paradigm adapted to graph, including a Graph Fourier Transform
(GFT) and graph filters. It allows the decomposition of brain signals based on spatial variabil-
ity relative to the structure of the brain network. Additionally, they introduce signal surrogate
generation, notably to assess significance of their results. They lead two experiments. In the first
one, subjects perform a classic Navon switching task : they visualize big symbols made of smaller
symbols (as big cross made of small circles). Depending on the colour of the small symbols, par-
ticipants are asked to report either the shape of small or big symbols. Naturally, the response
time is increased when the task switch, which allows defining what’s called a switch cost. Using
GSP tools, authors have shown that having isolated brain regions highly activated is positively
correlated with high switch cost.

Authors provide no code. We wrote our own code for the experiments we conducted. Inès focused
on graph surrogates and performed the experiment described in 4.1. Mathis performed on the
experiment described in 4.2. We state an equal contribution for the rest of the work carried out.
Our code is available on GitHub.

Along with qualitative remarks, our contribution lies in the three experiments we conducted. As
neither code nor data used in the paper were available, we found another dataset, BOLD5000 [1],
on which we performed experiments using the tools introduced in the article.

2 Method

We consider a weighted graph G = (V , S) where V is the set of N vertices associated with specific
brain regions and S ∈ RN×N is a matrix connectivity representation (usually the adjacency matrix
or Laplacian). We also consider a graph signal X ∈ RN×T where T is the length of the time series.
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2.1 Graph Fourier Transform

In order to define a Fourier transform on G, one must diagonalize this S and express it in the form

S = VΛV−1 (1)

where Λ is a diagonal matrix containing the eigenvalues of S, and V is a matrix of associated
eigenvectors. This allows the definition, given a signal x on G, of the graph Fourier transform of x
on G as

x̃ := VTx (2)

Please refer to the appendix A for the computations that draw parallels with the discrete Fourier
transform on temporal data.

2.2 Graph filtering

In the context of graph signal processing, filters are commonly defined within the spectral domain.
Let h be a transfer function, and we denote H as the diagonal matrix where Hii = h(λi), and λi
denotes the eigenvalues of S. The filtered signal Yh ∈ RN×T is defined as follows

Yh := VHVTX (3)

In this formulation, filtering is applied independently to each time sample x[t]. However, un-
like traditional time-domain filtering, graph filtering leverages the graph structure to smooth the
signal across its edges rather than along the time axis. This distinction becomes obvious when vi-
sualizing the impact of graph filtering on a signal. Figure 8 illustrates the differences in the same
signal, either filtered with a low-pass filter or a high-pass filter. Colour values on the low-pass
filtered signal exhibit greater homogeneity across nodes than on the high-pass filter one.

2.3 Generation of graph surrogate signals

Statistical testing is crucial when it comes to make inferences about the properties of signals. For
example, we may want to test whether the observed signal is significantly different from a random
signal. Phase-randomization in the temporal Fourier domain [2] offers to preserve the spectral
properties of the time series while randomizing the signal. It consists in generating surrogate
data from an original time series by randomizing the phases of the original time series while
keeping the magnitudes of the Fourier components unchanged. The surrogate signal is given
by Y = XFHϕtimeF, where ϕtime contains random phase factors, F and FT indicate the temporal
Fourier Transform and Inverse Fourier Transform, respectively.
We can extend this procedure to the graph framework : Y = VϕgraphVTX where ϕgraph is a diagonal
matrix containing random phase factors. ϕgraph can be defined by random sign flips of the graph
spectral coefficients. An explanatory scheme is provided in Figure 10.

In [3], one of the objectives is to discern significant signal excursions, which are distinct moments
in time when brain activity enters a regime of strong alignment or liberality.
In the context of the authors’ study, alignment and liberality are concepts used to characterize dif-
ferent aspects of functional brain activity. Alignment is associated with regions of the brain that
activate simultaneously. On the other hand, liberality pertains to areas that exhibit high signal
variability, suggesting a more diverse and dynamic pattern of activity. Alignment is computed
using a low-pass filter on the graph because low-pass filters allow the preservation of lower-
frequency components while attenuating higher-frequency variations. Liberality, conversely, is
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computed using a high-pass filter on the graph that emphasizes higher-frequency variations. The
authors employed the following procedure to compute excursions in those different regimes :

1. capture alignment and liberality with low-pass and high-pass filters on the original signal

2. generate 1,000 null surrogate signals for each filtered signal, as performed in [4]

3. employ the generated null data to threshold the filtered signals at a α-level of 5%

3 Data

3.1 BOLD5000 dataset

We used the BOLD5000 database [1] in our experiments. It is a large-scale fMRI dataset that
captures brain scans from four patients as they view over 5,000 images. The dataset covers a wide
range of visual features, categories, and semantics, and can be used to test various hypotheses and
models related to visual cognition.
fMRI produces 4D images, relying on the principle that localized neural activity induces changes
in metabolism and blood flow. To record cerebral activity during functional sessions, the scanner
is tuned to detect this "Blood Oxygen Level Dependent" (BOLD) signal. Brain activity is measured
in sessions that span several minutes, during which participants are presented with a variety
of images. Simultaneously, participants engage in a valence judgment task for each stimulus,
expressing their preference using the descriptors "like", "neutral", and "dislike", which are encoded
with labels 1, 2, and 3.
As the mapping between descriptors and labels was not provided, we inferred it ourselves.

3.2 Time series extraction and diagnosis

For each region of interests (ROIs) in the dataset, we extracted the time series, which represents
the temporal activity in the brain. We used Nilearn -a Python library that provides tools for neu-
roimaging data analysis- to extract the signals. Signal extraction is usually achieved by averaging
the fMRI time series across the voxels in a region [5].

In this study, time series were z-scored, i.e. shifted to zero mean and scaled to unit variance. We
also took into account the confounds in the extraction, as there were provided in the database.
Confounds are variables that can affect the brain signal and are not of interest in the study. They
can include head motion, physiological noise, and scanner artefacts. In order to extract clean
signals from brain regions, it is important to remove the effects of confounds from the data.

The time series obtained from the regions of interest (ROIs) do not appear to be noisy, as shown
in Figure 3a. One can assume that signal are weak stationary as their mean and autocorrelation
does not appear to vary over time. The spectrogram plotted in figure 5b shows that their spectral
properties does noes not change over time. They all exhibit the same variability and mean as
they were z-scored. Their values range between −2.5 and 2.5, except for some regions that have
extreme values or outliers (see Fig 3b). They seem to have the same spectral properties except
for the retrosplenial complex (RSC) region in left and right hemisphere which has a more chaotic
spectrum. Those results are shown in figure 5.
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3.3 Brain Graph Construction

In order to represent the strength of axonal connection (structural connectivity), authors of [3]
defined Aij as a simple count of the number of streamlines - i.e. estimated individual fibers that
connect the regions - using diffusion spectrum imaging. However, since we did not have access
to this information, we defined the adjacency matrix A in another manner. In our setting, it cor-
responds to the connectivity matrix between brain regions (functional connectivity). Indeed, the
extracted signals can be used to compute a correlation matrix between the regions [5]. It is a
common metric for computing the edges between the nodes, and is depicted in figure 6a.

4 Results

4.1 Extract excursions in alignment and liberality regimes

In this section, we investigate the following questions : (i) In our setting with only 10 regions, can
we exhibit regions with frequent moments of strong alignment and liberality ? (ii) Does the choice
of low-pass or high-pass filter influence the percentage of significant excursions ? (iii) What do we
obtain if we apply the conventional phase Fourier randomization ?

Mirroring the approach of the authors [3], we propose a non-parametric, model-free statistical
test for identifying unexpected fluctuations in time series magnitude over time. We compute the
average of the (temporal) 95% percentile on the surrogate signals, as illustrated in Figure 9. The
obtained value is used to threshold the "true" time series. The time points that exceed this thresh-
old are said to be significant excursions. The protocol is repeated for all the 20 runs and statistical
results are plotted in Figure 11.
The authors chose the 12% smallest and largest eigenvalues for the alignment and liberality filters,
respectively. It comes down to almost 2 eigenvalues for our graph. We implement the equivalent
version of the filters and two other continuous filters that are displayed in Figure 7. The continu-
ous low-pass filter is defined by hlow, continuous(x) = 1

1+τx with τ = 3 and the continuous high-pass
filter is given by hhigh, continuous(x) = 2

1+exp(−τ(x−r)) with τ = 1 and r = 5.

The study by Huang et al. [3] focused on 87 brain regions, in contrast to our dataset with only
10 regions. Consequently, it is unsurprising that we do not replicate their reported percentage of
excursions. Our findings, depicted in Figure 11, reveal two key observations: (i) the inability to
identify regions with a high percentage of excursions, attributed to the limited number of studied
regions; and (ii) the similarity in results between continuous and non-continuous low-pass filters.
However, for high-pass filters, certain regions, such as the left hemisphere lateral occipital cortex
(LHLOC) and the retrosplenial complex (RSC), do not have the same percentage of excursions and
the same variability. This discrepancy may be attributed to the high-pass continuous filter accept-
ing more eigenvalues than its non-continuous counterpart, as illustrated in Figure 7. Notably, the
majority of eigenvalues surpass 3. Thus, the continuous low-pass filter select a sufficient number
of low eigenvalues compare to the non-continuous low-pass filter, which is not replicated by the
continuous high-pass filter.
Moreover, (iii) Figure 12 indicates that performing a statistical test with the conventional random-
ization do not exhibit differences between the brain regions. This outcome is anticipated, given
that the phase randomization matrix ϕ is uniformly applied to the nodes of the graph in the same
manner. However, the article [3] reported that alignment excursions persist when employing con-
ventional randomization. We can argue that our inability to replicate these results stems from the
limited availability of labelled brain regions in our dataset.
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4.2 Utilizing Neural Correlates to Predict Subjective Experience of Visual Stimuli

In this experiment, we aim to employ GSP tools to predict the subjective preference of pictures.
Specifically, using the BOLD5000 brain images, our objective is to predict categorical labels : 1, 2,
or 3. In order to avoid subtleties caused by inter-subject studies, we confine this experiment to
data acquired solely during the initial 6 runs of the first session of subject CSI1.

We compute 6 matrices sized (10, 194) corresponding to the activation levels of the 10 brain regions
across the 194 time points. This process enables the computation of a connectivity matrix for each
of the 6 runs, where connectivity is derived as the average connectivity across the 194 time points.
To create a unified representation, we compute the average connectivity matrix from the set of 6
connectivity matrices, which allows defining a brain graph based on this final averaged matrix.
We perform diagonalization of the Laplacian matrix associated to this graph, enabling for graph
Fourier transform. Given the graph’s 10 vertices, for each of the 6 × 194 time points, we compute
the graph Fourier transform of the activation across the 10 brain regions projected on the graph.
This process yields 6 × 194 samples, each comprising 10 features: the Fourier coefficients.

Using the Sklearn, we train both a simple Multi-Layer Perceptron and a Gradient Boosting Tree.
Training involves 80% of the vectors made of the squared Fourier coefficients. Then, we evaluate
the models’ performance on the remaining 20% of the data. Regrettably, we do not observe any
improvements in balanced accuracy as compared to random classification. However, as this ap-
proach breaks down the temporal continuity by considering individual vectors without account-
ing for the fact that the complete response pattern for each image spans 4 to 5 time points, it was
expected to obtain poor results.

That’s why, ultimately, we tried to perform dictionary learning, with the aim to extract specific
patterns for each appreciation. Unfortunately, as the patterns we are looking for are 4 to 5 time
points long, dictionary learning is not very suited to extract them.

4.3 Subjective Experience Prediction with K-Nearest Neighbors and Distance Time
Warping

We refer to a "sub-sequence" as the segment within the time series when the patient is observing a
single image. Those sub-sequences last approximately 10 seconds and have a temporal length of
4 to 6 time points.
In this section, our objective is to classify these sub-sequences using a k-Nearest Neighbors (K-
NN) algorithm. Let’s index the sub-sequences with I and for any i ∈ I, let’s denote the temporal
lengths of the sub-sequence i with Ti. Consider Xi ∈ RN×Ti and Xj ∈ RN×Tj as two sub-sequences.
They may have different temporal lengths. Recall that N is the number of brain regions. We define
the distance between X and Y as

d(Xi, Xj) =
1
N

N

∑
n=1

DTW(Xi[n], Xj[n])

where DTW is the Distance Time Warping (DTW) measure.
Using Scikit-learn, we implemented a cross-validation to compare results across various number
of neighbors. The balanced accuracies are depicted in Figure 13. The only model surpassing the
chance level is the one with k = 3 neighbors, displaying a median accuracy of 40%. However,
the variability remains substantial. This may be explained by the relatively short length of the
sub-sequences. Furthermore, caution is advised when independently comparing sub-sequences
from different runs.
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Appendices

A Parallel with Discrete Fourier Transform

Pour développer l’intuition, et voir plus clairement le parallèle avec la transformée de Fourier
discrète, il peut être intéressant de se demander si un graphe permet de retrouver l’interprétation
habituelle de la transformée de Fourier discrète d’un signal temporel. Les graphes cycliques per-
mettent cela. En effet, soit un signal x sur le graphe cycle à N sommets CN . La matrice laplacienne
LN de ce graphe s’écrit, pour N = 6

L6 :=



2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2
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En notant

JN :=


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 1
1 0 0 . . . 0


on observe que

LN = 2IN − JN − JN−1
N (4)

Or les valeurs propres de J sont les racines N-ièmes de l’unité ω0, ..., ωN−1 où ω := e
2iπ
N et pour

tout k ∈ [[0, N − 1]],

Xk :=


1

ωk

ω2k

...
ω(N−1)k


est vecteur propre de J associé à la valeur propre ωk. Cela permet donc, en notant W la matrice de
transformée de Fourier discète

W :=



1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1)


d’écrire

LN = W(2IN − Ω − ΩN−1)W−1 (5)

où Ω := Diag(w0, ..., wN−1)
Ainsi, les valeurs propres de LN sont les λk = 2 − ωk − ω−k pour k ∈ [[0, N − 1]].
En utilisant la définition de la transformée de Fourier sur les graphes 2, on explicite le k-ième
coefficient de Fourier

x̃k = W∗
k x (6)

= Wkx (7)

=
N−1

∑
n=0

xnω−nk (8)

=
N−1

∑
n=0

xne−2iπn k
N (9)

On retrouve la définition de la transformée de Fourier discrète.
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(a) Représentation temporelle d’un
signal echantillonné

(b) Représentation du même signal
sur un graphe circulaire

Figure 1: Deux représentations d’un signal échantillonné dont on calcule la transformée de Fourier
par les deux définitions dont on dispose : la transformée de Fourier discrète, et la transformée de
Fourier d’un graphe

B Data visualization

B.1 MRI Image

Figure 2: Example of a 3D MRI plotted for the first patient
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B.2 Time series diagnosis

(a) Time series in each region of interests

(b) Box plot of the time series

Figure 3: Analysis of the extracted time series. There were 10 ROIs: early visual (EarlyVis), lateral
occipital cortex (LOC), occipital place area (OPA), parahippocampal place area (PPA), retrosplenial
complex (RSC) for the left hemisphere (LH) and right hemisphere (RH).

9



Figure 4: Autocorrelation analysis across various brain regions. Not all results were plotted to
enhance readability.

(a) Discrete Fourier Transform (DFT)

(b) Spectrogram

Figure 5: Spectral analysis of the time series for each brain region. (b) The spectrogram was
computed with window length of 20 and an overlapping of 16.
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C Graph Construction

(a) Connectivity matrix

(b) Functional-connectome graph

Figure 6: Representation of the brain graph. (a) Connectivity matrix for a given patient, which is
also the adjacency matrix A of the graph G. The entry Ai,j of the connectivity matrix is obtained
by computing the correlation coefficient between the time series extracted from regions i and j.
(b) displays the corresponding connectome. This representation offers a unique insight into the
patient’s neural architecture, highlighting the potential correlates of cognitive processes
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D Filters

Figure 7: Comparison of different filters for graph signal analysis. The alignment filter and the lib-
erality filter are the low-pass filter and high-pass filter, respectively, employed in the article[3]. The
authors defined their filters by considering the 10% lowest and largest eigenvalues, respectively.
In our context, this comes down to filtering approximately 2 eigenvalues.
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(a) Filtered signal YH

(b) Filtered signal at time t = 0 in the brain graph.

Figure 8: Visualization of the filtered signals at each time point in (a) and on the graph in (b). (a)
The down arrow in y-axis indicates the brain regions. The x-axis corresponds to the time axis. (b)
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E Test statistic

Figure 9: Threshold computed on the surrogate signals. p95 and p5 are respectively the average of
the 95% and 5% (for significant low amplitude) percentile on the surrogate signals.

Figure 10: Surrogate signal generation scheme.
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F Results on computing excursions

(a) Article-inspired low-pass filter (b) Article-inspired high-pass filter

(c) Continuous low-pass filter (d) Continuous high-pass filter

Figure 11: Comparison of different filters for computing excursions in alignment and liberality
regimes. The method outlined in section 4.1 were repeated on 20 different fMRI of the same
patient. For each run, we generate 1,000 null surrogate graph signal.

15



(a) Continuous low-pass filter (b) Continuous high-pass filter

Figure 12: Results using the conventional phase Fourier randomization in the temporal domain.

G Accuracy of the k-NN with DTW

Figure 13: 5-fold cross-validation of the model combining DTW and k-neighbours classifier.
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