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1 INTRODUCTION
In this report, we provide a review of the article titled "Modeling

the Shape of the Brain Connectome via Deep Neural Networks" [5].

In this 2023 paper, the authors present a novel Riemannian method

aimed at inferring brain connectomes using Diffusion Weighted

Imaging (DWI) data acquired throughMagnetic Resonance Imaging

(MRI).

This method is part of a bigger project from the team [2], which

works in finding a robust and multimodal framework to statistically

analyze and quantify geometric variability of a population of brain

connectomes.

Neural brain connectomes, often represented by fibers tracts,

are a representation of whole brains’ white matter. They have be-

come a clinical standard for studying and diagnosing neuro-diseases

on a non-invasive manner. They allow for both functional stud-

ies from autism to Parkinson’s Disease [17][3], but also structural

and anatomical studies (tractography), mainly pre-surgery neuro-

oncology planning[18][10]. Indeed, an accurate and meaningful

"connectome" allows physicians to assess the location of vital fiber

tracts surrounding a tumor, white matter density of cognitive path-

ways. . .

Several imaging modalities are available to produce a brain’s

tractography, the most useful being DWI/DTI and its variants, all

based on Magnetic Resonance Imaging. MRI relies on the principles

of nuclear magnetic resonance to create high-resolution images

of internal organs and tissues, by subjecting the body to a strong

magnetic field. It exploits the behavior of hydrogen protons within

Figure 1: Different usecases for a single brain connectome.
Adapted from [6]

water molecules, aligning them to the magnetic field, then per-

turbing this alignment to generate signals that are translated into

detailed cross-sectional images.

Building on this core principle, DWI specifically measures the

diffusion of water molecules in axonal fibers. As a reminder, the

axon is the transmitting part of the neuron, a long "cylinder" sur-

rounded by a myelin sheath (which appears white). These axons

represent the information highway in our body. Thus, disentan-

gling the 90 · 109 neurons of the brain into distinct tracts wiring

one region to another seems quite vital to have a structural and

functional understanding of our neural system.

DWI relies on the fact that water molecules are more likely to

diffuse along the long axis of the fibers. Specifically, it allows to

extract quantitative measures of the direction of the neuronal tracts.

However, one of MRI’s (a fortiori DWI) main downsides is that its

sequence acquisition and results are highly dependant on the device

used, leaving a backdoor to mis-registration with other anatomical

images. Furthermore, DWI suffers from several technical and finan-

cial limitations such as poor resolution, and inaccuracies generated

1



Reymond et de Charrin

by a rather low Signal-to-Noise Ration (SNR)[10].

All these factors combined together make it currently difficult to

compare on a statistical level between hospitals, countries. . . There

is a need for further refinement of DWI tractography methods,

by reducing voxel size, reducing distortion, and developing bet-

ter techniques for dealing with crossing fibers and multiple fiber

directions.

Here, the authors adress these challenges by proposing to ap-

ply a Riemannian geometry framework along with deep neural

network’s abilities to efficiently solve partial differential equations.

Indeed, studying the brain’s shape (mostly its white matter path-

ways) should be similar to studying any shape, and a Riemannian

framework seems particularly relevant. Moreover, constructing a

Riemannian manifold for the connectome should give access to a

very ideal toolbox for later statistical analysis. There are a lot of

tools available one can use to calculate an average brain connec-

tome, which quantifies the geometric variability over a population

[2]. To construct such a manifold, one must find a global Riemann-

ian metric compatible with the DTI.

2 MATHEMATICAL BACKGROUND
Usually, classic methods for tractography rely on computing the

integral curves over the DTI vector field, to find the most likely fiber

tract for each voxel. However, such a technique is highly sensitive

to noise, impossible to avoid in DWI measurements. For this reason,

the authors have successfully combined deep learning models with

the Riemann manifold.

A Riemann manifold is a real, differentiable mathematical man-

ifold, namely a sort of domain where we can perform some dif-

ferentiation and apply ML techniques. The shape of the Riemann

manifold can infer the white matter pathways and, together with

deep learning, it is possible to have a model to find the perfect curve

that fits for shaping a connectome by computing its geodesics.

If the connectome lives in a Riemann manifold it means that we

can have Riemannian metrics. A Riemannian metric can tell us how

to find the right path for satisfying and creating a connectome; the

way to find this perfect path being to solve a partial differential

equation (PDE). The solution for this PDE is geodesic curves, a

family of curves that satisfy the Riemannian metrics. Since this

problem is hard to be solved, the authors reversed the question

point of view.

What we need is to find a Riemannian metric on the manifold

which minimizes a given energy functional form. When the mini-

mization is achieved, it means we have found the right geodesic,

namely the right path/connectome, which fits our mathematical

domain. Unlike tractographic methods based on following the flow

of principal eigenvectors of the diffusion tensor, these geodesic

paths are well-defined even in regions where the tensor diffusion

is isotropic.

This problem can be nowadays solved with deep learning models

such as PINNs (physics-informed neural networks)[24], which can

estimate the solution to PDE problems. In particular, the authors

have employed the extension of PINN, namely the convolutional

encoder-decoder neural network (CEDNN), which constructs multi-

scale features from high-dimensional input.

The main objective of this neural network is to perform the

optimization of a loss function between the ground truth data and

the estimated metric. Hence, the CEDNN minimizes the following

loss function :

𝜀 (𝑔) =
𝑚∑︁
𝑖=1

∥∇𝑔
𝑣𝑖 𝑣𝑖 − 𝜎𝑖𝑣𝑖 ∥2 + 𝛼 Reg(𝑔) (1)

Here, the loss ensures that the DWI vector fields 𝑣𝑖 are close to

being geodesic vector fields under the current estimated metric

𝑔. The penalization term is said to be of no particular matter, but

should ensure that the estimated metric is not too aberrant.

This representation in the form of a Riemannian metric for each

individual facilitates the process of analyzing connectomes, viewing

them as points in an infinite-dimensional manifold. After equipping

this space with a natural metric structure, one can apply object-

oriented statistical analysis to define an atlas as the Fréchet mean

of the population of Riemannian metrics.

3 ALGORITHM
DWI data appears as a vector field where a diffusion orientation

distribution function (dODF) is attached to each voxel, providing

the directions of water diffusion. These vector fields are obtained

through any state of the art tractography method, namely DSI-

Studio [22] or MICA [4] pipelines. They can be interpreted as fiber-

tangent directions at each voxel. Here, the authors are not interested

in computing this distribution function, but rather using it directly

to compute the projection onto the Riemannian space. Thus, and

for the sake of "proof of concept", here the authors only use the

most basic analysis available : eigen decomposition of the diffusion

tensor. The interesting part is the analysis of the vector field they

propose, and the way they identify the Riemannian metric whose

geodesics most accurately match the DWI data.

Their architecture is able to take as input several vector fields

from a single individual (unlike previous methods), either obtained

through different imaging modalities, or consecutive DWI acqui-

sitions. Then, the network presents a synergistic use of 3 distinct

tricks :

(1) the PINNs [14][24] architecture we previously introduced.

By hard-coding some real-world constraints such as semi-

definitive positiveness and using surrogate models, one is

able to significantly speed up the resolution of PDEs with-

out any labeled data. Originally, this architecture was de-

signed to solve determinist PDEs such as steady-state fluid

dynamics, by using as surrogate a flow-based generative

model. Changing the pressure and viscosity by the fibers

flow along a vector field, one can clearly make a usecase of

this concept in tractography.

(2) the DenseNET architecture [12], successor of ResNET. By

concatenating every previous channel to the next one, this

deep learning network is able to "learn" on the residuals and

have a strong gradient flow. This compactmodel allows for a

better efficiency as layers can be smaller and low-dimension.

This improves the information flow of the network and

allows for a more computationally efficient system.
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(3) and an Encoder-Decoder architecture, in order to build

the features from a very high-dimensional space, and then

decrease to a more computional-friendly space.

The output of the neural network is supposed to be directly the

estimated Riemannian metric, which will be used to compute the

exponential map implemented in the loss function. However, di-

rectly solving the metric was long and fastidious, and didn’t make

use of the fact that the output is supposed to be an SPD matrix.

The authors preferred instead to output the Rodrigues eigendecom-

position of the Riemannian metric. This allows them to directly

compute the exponential map, and compare the estimated geodesics

with the ground truth integral curves. Thus, they report a 5-fold

change in training efficiency.

The Riemannian metric having the best fit with the DWI data is

then supposed to represent the data more accurately, and can be

used to register the corresponding tractography to an anatomical

atlas.

Figure 2: Overall architecture of the network

4 EXPERIMENTAL METHOD
4.1 Ground truth
Authors use integral curves (denoted P) of a specific vector field as

ground truth tracts for the experiments. In the braid experiment,

this vector field is an artefact, while in the 2D and 3D experiments,

it is derived fromHuman Connectome Project (HCP) datasets, using

state of the art method provided by DSI Studio as mentioned above.

4.2 Evaluation metric
In order to assess the accuracy of the different tractographymethods

tested in the 2D Brain Slices experiment, the authors had to find

a common metric that compares ground truth tracts to inferred

geodesic tracts originating from the same seed. This metric can be

interpreted as an error.

To calculate this error between curves𝑄 (inferred geodesics) and

curve 𝑃 (ground truth), {𝑃} and {𝑄} need to be seen as finite point

sets, which allows to consider the mean minimal error between

these two sets.

Error(𝑃,𝑄) = 1

|𝑃 |
∑︁
𝑝∈𝑃

min

𝑞∈𝑄
∥𝑝 − 𝑞∥2

2
(2)

where 𝑃 denotes an integral curve and 𝑄 a geodesic tractography

curve starting at the same seed point. Finally, authors plot this

error for geodesics inferred with their method along with other

Riemannian methods.

4.3 Results
4.3.1 2D tractography. The authors conducted a quantitative exper-
iment focused on 2D tractography. They compared their method to

three state-of-the-art geodesic tractography methods: the inverted

diffusion tensor metric [16], the adjugate of the diffusion tensor

[7], and the conformal metric [9]. See Figure 3. Using a boxplot,

they illustrated the average error of each method, calculated from

geodesics derived from 400 distinct seed points. Their analysis of

the boxplot led them to conclude that their method outperforms the

others in terms of ability to construct a Riemaniann metric whose

geodesic are close to ground truth fiber tracts.

However, given the high variance in the error calculations from

each tract reconstruction, drawing definitive conclusions becomes

challenging. This difficulty is compounded by their previous com-

parison in an earlier version of the article, which displayed signifi-

cantly poorer results for the inverted and adjugate methods than

for the conformal and proposed ones.

4.3.2 PINN vs CEDNN. Additionally, in order to demonstrate CEDNNs

ability to perform crossing tracts reconstruction, the authors gen-

erate an artificial vector field with crossing-braid shape, and they

compute the optimized Riemannian metric using their algorithm

two times : one time with a PINNmodel and another with a CEDNN

model. The point is to compare the resulting geodesics. Finally,

along with the integral curve, they plot a geodesic associated to

the CEDNN-architecture metric and the one associated to standard

PINN-architecture metric originating from the same seed. While

qualitative assessment on the resulting figure indicates that CEDNN

yields a better geodesic, it remains unclear whether this discrep-

ancy reflects a specific struggle of the PINN model in dealing with

crossing fibers or if the PINN model is generally weaker than the

CEDNN at this task. A valuable complementary experiment would

involve comparing the models’ abilities to infer accurate geodesics

associated with non-crossing tracts. This additional comparison

could provide a clearer understanding of the models’ strengths

and weaknesses in various tractography scenarios. We’re currently

working on this subject, and hope to present interesting results

during the viva.

Figure 3: 2D experiment. On the left, detailed view of the
geodesics and integral curve starting from the star. On the
right, distances between integral curves and the different
SOTA methods evaluated.
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4.3.3 Varying the activation function. Additionaly, the authors per-
formed the log-scaled loss convergence comparison between both

neural network architectures for solving the inverse problem of

estimating a Riemannian metric from two synthetic vector fields

in a "braid" pattern, using various activation functions. The result-

ing figure shows that the convolutional encoder-decoder neural

network (CEDNN) with LeakyReLU activation function converges

much faster and to a lower loss (by order of magnitudes) than the

"vanilla" physics-informed neural network (PINN) with LeakyReLU,

Siren, or Fourier embedding. Thus, they conclude that the CEDNN

is more efficient and accurate for this problem than the PINN.

Here is how they proceeded :

(1) Synthesize two vector fields in a "braid" pattern by translat-

ing two trigonometric functions across nine pixels horizon-

tally and computing their tangent vectors at each point.

(2) Configure the CEDNN and the PINN with approximately

the same number of parameters and different activation

functions or embeddings.

(3) Train both models, using the synthetic vector fields as the

input data.

(4) Plot the log-scaled loss values at each iteration for each

network architecture and compare their performance.

5 CODE
5.1 Struggle
One of the strengths of the paper lies in the authors’ inclusion

of their code, available on their GitHub repository. Initially, we

intended to review this code, execute it, and ideally offer comple-

mentary insights into the data. However, despite investing hours

of effort, we encountered difficulties replicating the authors’ envi-

ronment. There were primarily two reasons for this:

(1) Firstly, both Anaconda and pip failed to resolve conflicts be-

tween libraries: scikit_image 0.18.3, skimage 0.0, and torch

1.10.2.

(2) According to the authors’ experience, the model required

approximately an hour to train on an Nvidia Titan RTX

GPU. Consequently, running it on a CPU was unfeasible.

Moreover, to execute the code on our available GPU, in-

stalling CUDA was necessary, a process known for its intri-

cacies. Regrettably, despite our attempts, we were unable

to properly define the torch optimizer (neither Adadelta

nor Adagrad), encountering errors such as "ValueError: net-

workx.__spec__ is None" and "ValueError: pandas.__spec__

is None." Despite seeking help from both ChatGPT and on-

line forums, these issues remained unresolved.

We attempted to execute a simpler experiment using braid sur-

rogate data but faced the same issues. Training the authors’ model

would have required a deep understanding of PyTorch intricacies

and hours to adapt their code to PyTorch new versions.

Ultimately, the hours invested in reviewing the authors’ code

were not futile. They shed light on the complexity of ensuring code

reproducibility when publishing a computer science paper. Man-

aging dependencies, versions, and configurations across diverse

platforms or environments often introduces intricate challenges. Ad-

ditionally, accommodating hardware disparities or unforeseen edge

cases further complicates this task, turning it into a multifaceted

endeavor that demands meticulousness. However, it’s important to

note that achieving reproducibility is not the primary objective for

researchers when presenting their work.

5.2 Breaking news
Ultimately, failing to build a proper GPU setup, we adapted the

code such that the model trains on our CPU. We wanted, firstly, to

reproduce the experiment in which authors compare PINN’s and

CEDNN’s ability to deal with crossing fibers and, secondly, to per-

form the same experiment on non crossing fibers, to check whether

PINN is inherently weaker than CEDNN, or if it is specifically bad

at dealing with crossing fibers on sinusoidal curves.

Thus, we trained the CEDNN model on the synthetic braid data

discussed earlier, which required only 10 minutes using a laptop

CPU. We inferred the optimal Riemannian metric (see left plot of

Figure 4). We observe that we get results significantly different from

the authors : in our metric, the ellipses are almost perfectly circular

in the crossing regions, while ellipses obtained by the authors are

flat in these regions and circular at sinus and cosinus extrema. Thus,

we expected the geodesic reconstruction to be very different from

the geodesic obtained by the authors, as our estimated metric seems

broadly different.

Indeed, we shot geodesics originating from two points (see the

right plot of Figure 4) and compared them to the associated integral

curves, which stand for the ground truth. We observed that our

geodesics are far from what we expected them to be, which reveal

weaknesses of the training procedure, but we failed at elucidating

this divergence.

Finally, we were unable to train the PINN in the same way, as we

didn’t find any trace of its implementation in the authors’ GitHub

(both 2D and 3D repositories).

Figure 4: Results from training the CEDNN model on braid
data. Left : estimated metric. Right : reconstructed vector
fields and geodesics shooted from the starred points - black :
integral curves, blue : reconstructed geodesics.

6 CRITICISM & LITERATURE
6.1 Two classical approaches
To date, most tractography techniques rely solely on the local vector

field, and thus don’t really allow for comparison between subjects

or even timepoints. Two main methods are used starting from the

vector fields: deterministic- and probabilistic tractography.
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Both methods can start from a point in the brain and trace white

matter connections. However, in general, deterministic methods

generate a single fiber connection from the start point, while prob-

abilistic methods aim to detect many possible connections from the

start point. Often, deterministic methods are visualized as curved

lines (streamlines), while probabilistic methods may output a map

of connection probabilities.

Usually, these methods allow for a better single-voxel match,

but are really dependant on the estimation of the vector field at

a particular voxel, and are thus not really robust to noise. The

deterministic pathway might accumulate several errors throughout

the direction estimation, while the probabilistic one, not being any

sparse, will bring much less information.

That’s why global methods have seen lights in the past decades.

Global approaches such as the estimation of a Riemannian metric

allow one to get rid of this voxel-dependency, and have a better

estimation of the tractography on a larger scale. Going from a local

to a global approach obviously affects the estimation of the recon-

structed fiber paths, and leads to a higher connection density than

their local probabilistic counterparts at the same percentile thresh-

olds. The idea of this approach is to improve the sensitivity/specifity

trade-off (we will come back on that).

This change of paradigm, from local to global and discrete to

continuous, is not new and mostly led by the Riemannian manifold

approach [16]. Several methods were proposed, but none seems

to have imposed in the scientific community, as most of current

tractography methods still rely on probabilistic tractography [15].

6.2 State of the Art in the Riemannian geometry
approach

As discussed previously, the authors evaluated 3 other Riemannian-

based methods against their proposed deep learning toolbox.

In the original paper [16], the inverse matrix of the Diffusion

Tensor was proposed as an estimation of the metric. However, this

rather "naive" approach is intuitive, but lacks robustness regarding

negative eigenvalues, and is often not able to estimate the metric

in noisy regions and high-curvature areas. When using this simple

method, one will often find "holes" in the connectome where the

tensor is ill-defined.

To address this issue, the authors themselves [9] proposed a

conformal local rescaling of the metric to follow more closely the

diffusion tensor principal eigenvalues along any curvature.

Lastly, a rather recent paper [7] proposed to improve the inverse

metric by considering the brownian motion in the diffusion analysis

not in the Euclidian space, but rather in the space induced by the

local Riemannian metric. This allows to have a locally isotrope

brownian motion, easier to describe and biologically more relevant.

This is achieved simply by estimating the metric as the adjugate of

tensor rather than the inverse.

Moreover, this metric can be "sharpened", i.e. elevated to some

power, in order to increase the global anisotropy. This is appliable

to any DTI estimation, but seems particularly powerful with this

"adjugate" metric.

However, all of these methods are based on a single DTI meth-

ods and can’t handle various imaging modalities, thus giving poor

results regarding fibers crossing. We can see this issue has been

successfully addressed by their novel deep learning architecture.

But several issues remain unanswered.

6.3 Criticism
Most of the critics proposed here are inherent to the choice of a

Riemannian geometry and more broadly, of a global approach.

First, it is assumed that the geodesics are the one and only rep-

resentation of the fiber tracts, but this is not always verified, and is,

in our opinion, more of a framework proposal to study the brain.

It is important in our eyes to realize that the Riemannian approach

must not stand as a replacement of streamline tractography, but

rather a genuine generalization that incidentally raises new prob-

lems: any two points in the brain are connected by at least one

geodesic - i.e. geodesic completeness, which makes sense from a

mathematical point of view, but might seem weaker from a medical

standpoint.

Some researchers in this rather small community are conscient

of this limitation [19], but this doesn’t really seem to be the case

for the authors here. From the papers we’ve read, the geodesics

potential misfit with ground truth data is never adressed.

In conjunction to that, the authors seem to insist on the fact that

their method remarkably handles fibers crossings. Fromwhat we’ve

seen, nearly every paper presenting a new methods has the very

same claim [1][21][20], and their results are not far from this pa-

per’s. Moreover, this might not seem very relevant from a medical

point of view, as DWI is limited by its resolution anyway (1.5mm

resolution at its absolute best), and pre-operative explorations aim

at targeting a more global fiber tract or ax, and not a single fiber. In

that sense, crossing fibers don’t really matter to know whether a

neural pathway goes through a tumor or not.

To moderate this critic, one has to keep in mind that in a DWI

image, nearly 60% of voxels are supposed to contain one or several

fibers crossings [13], and this number is likely to be underesti-

mated. Moreover, this deep learning tool should not be regarded

as a method for solely individual connectomes, but rather a new

robust way of analyzing DTI data on a statistical level. When it

comes to computing an average connectome atlas, one is really

interested in the multiple fiber crossings. With this framework in

mind, a substantial number of analyses will be greatly impacted

in a cascade effect, from functional studies to proper structural

knowledge of the spine.

Moreover, an individual tractography is really nice on the paper,

and as proposed in introduction, might have a lot of clinical appli-

cations. But this might not be the case in real life, as pointed out

by [23]. Indeed, the very nature of DTI makes it very noisy, and

even the best individual tractography method will present several

false positive fibers (low specificity). They found that state of the

art methods presented more invalided fibers tracts than valid ones,

despite a high sensitivity (> 90%). Therefore, they might not be

really reliable to date.

Rather, clinical studies mostly use normative connectomes, com-

puted from a very large cohort size on specialized hardware, which

are often more accurate and predictive than individual ones from

clinical-grade MRIs. These data have indeed been successfully lever-

aged recently to study the mechanisms of DBS action [11] and also
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to explore how data from disparate lesion studies can be integrated

to understand the role of brain networks in disease [6], which was

supposed to be the very role of individual connectomes.

The authors are conscient of this limitation, and that’s why they

insist on the fact that this paper is more of a method in a broader

framework aiming at robust populational statistical analysis [2].

Again (to hammer the nail), using the metric proposed here would

allow for an easy statistical analysis by simply representing the

"common" atlas as a Fréchet mean of the individual connectomes.

Thus, the specific brain shapes would be well-conserved, and one

can compare "diseased" connectomics to healthy ones.

With that goal in mind (statistical atlas construction, principal

geodesic analysis...), their deep learning method presented here is

welcome, but won’t be enough to achieve the ambitious goals from

the introduction. It would hugely facilitate the construction of a

large human connectome database, robust to registrations and de-

formations. In synergy with reliable anatomical priors from ex vivo

histology, high-resolution post-mortem, or complementary elec-

trophysiology for optimal guidance, tractography methods might

become truly reliable.

To that end, a nice multi-modal geometric approach relying

on graphs was recently proposed [8]; the conjunction of these 2

methods is really promising, and we might manage to overcome

current challenges.

6.4 Discussion and perspectives
Rather than locally computing a fiber path, the authors propose

here to find a global Riemannian metric on individuals brains by

leveraging the capabilities of Encoder-Decoders, and represent them

as points on a manifold, thus allowing for statistical comparison.

Despite several limitations, this paper is a nice method for a more

robust analysis of brain connectomes, presenting a successful use

of a broad range of deep learning techniques to efficiently analyze

the computationally expensive DWI data. They make use of a really

interesting mathematical method which is already bulletproof in

other computational anatomy frameworks.

Some authors even go further in that matter [19], and propose to

get rid of the "restrictive" Riemannian geometry in order to work

with more generalistic tools, such as Finsler geometry. While they

don’t actively present breakthrough results in this paper, it would

be interesting in our opinion to see this approach combined with

the deep learning tools we presented and a variational approach

on metric geometry.

We hope that this kind of approaches generalizes to the whole

community, allowing for better statistical comparison, atlas regis-

tration, and in the end a strong clinical impact.
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