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1 Introduction

The effectiveness KNN algorithm heavily relies on the distance metric chosen to quantify the similarity or
dissimilarity between data points. While Euclidean distance is commonly used, it often falls short when
dealing with data that inherently carries specific information that could be leveraged more efficiently.
This document introduces a novel custom distance metric specifically designed for multivariate samples
where each feature can be described by a Gaussian distribution, defined by its mean and variance. So,
in our case, data carries information about its own uncertainty or spread.

Consider a scenario where each data point in our dataset is not a single vector of precise values, but
rather a collection of observed means, each associated with its own standard deviation. In such cases,
treating each data point as a Gaussian distribution—characterized by its mean and variance for each
dimension—allows us to capture this inherent uncertainty.

The motivation for developing this custom distance stems from the need to move beyond traditional
point-to-point distances, like Euclidean distance, which would not make a good use of the standard
deviations. By considering the probabilistic nature of our samples, we aim to develop a distance for KNN
algorithm that can make more informed decisions by understanding the overlap and separation of the
underlying distributions.

2 Distance of a random variable to a fixed point

2.1 Random variable centered in 0

First, we are interested in the calculation for E[|X − d|] where X follows a Gaussian distribution with
mean µ = 0 and standard deviation σ ∈ R+. So, X ∼ N(0, σ2).
The expectation is given by:

E[|X − d|] =
∫
R
|x− d| 1

σ
√
2π

e−
x2

2σ2 dx
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And by splitting the integral at x = d we get

E[|X − d|] =
∫ +∞

d

(x− d)
1

σ
√
2π

e−
x2

2σ2 dx+

∫ d

−∞
(d− x)

1

σ
√
2π

e−
x2

2σ2 dx

=
1

σ
√
2π

[∫ +∞

d

xe−
x2

2σ2 dx− d

∫ +∞

d

e−
x2

2σ2 dx+ d

∫ d

−∞
e−

x2

2σ2 dx−
∫ d

−∞
xe−

x2

2σ2 dx

]

=
1

σ
√
2π

[∫ +∞

d

xe−
x2

2σ2 dx−
∫ d

−∞
xe−

x2

2σ2 dx

]
+

d

σ
√
2π

[∫ d

−∞
e−

x2

2σ2 dx−
∫ +∞

d

e−
x2

2σ2 dx

]

Let’s evaluate the integrals involving xe−
x2

2σ2 : For
∫
xe−

x2

2σ2 dx, let u = − x2

2σ2 . Then du = − 2x
2σ2 dx =

− x
σ2 dx, so xdx = −σ2du. Thus,

∫
xe−

x2

2σ2 dx =
∫
eu(−σ2du) = −σ2eu = −σ2e−

x2

2σ2 .
Now, substitute this back:

1

σ
√
2π

[[
−σ2e−

x2

2σ2

]+∞

d
−
[
−σ2e−

x2

2σ2

]d
−∞

]
=

1

σ
√
2π

[
(0− (−σ2e−

d2

2σ2 ))− (−σ2e−
d2

2σ2 − 0)
]

=
1

σ
√
2π

[
σ2e−

d2

2σ2 + σ2e−
d2

2σ2

]
=

1

σ
√
2π

[
2σ2e−

d2

2σ2

]
=

2σ√
2π

e−
d2

2σ2 = σ

√
2

π
e−

d2

2σ2

Next, let’s evaluate the integrals involving e−
x2

2σ2 . Recall that
∫ d

−∞
1

σ
√
2π

e−
x2

2σ2 dx = Φ
(
d
σ

)
, where Φ(·)

is the cumulative distribution function of the standard normal distribution. And
∫ +∞
d

1
σ
√
2π

e−
x2

2σ2 dx =

1− Φ
(
d
σ

)
.

So, the second part of the original expression becomes:

d

σ
√
2π

[∫ d

−∞
e−

x2

2σ2 dx−
∫ +∞

d

e−
x2

2σ2 dx

]

= d

[
1

σ
√
2π

∫ d

−∞
e−

x2

2σ2 dx− 1

σ
√
2π

∫ +∞

d

e−
x2

2σ2 dx

]

= d

[
Φ

(
d

σ

)
−
(
1− Φ

(
d

σ

))]
= d

[
2Φ

(
d

σ

)
− 1

]
Combining both parts, we get the final result:

E[|X − d|] = σ

√
2

π
e−

d2

2σ2 + d

(
2Φ

(
d

σ

)
− 1

)
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2.2 Random variable centered in µ

Now, let Y ∼ N(µ, σ2). To compute E[|Y − d|] we can note that if we let X := Y −µ then X ∼ N(0, σ2)
and

E[|Y − d|] = E[|(X + µ)− d|]
= E[|X − (d− µ)|]

And by substituting (d− µ) for d in the previous fomrula, we find

E[|Y − d|] = σ

√
2

π
e−

(d−µ)2

2σ2 + (d− µ)

(
2Φ

(
(d− µ)

σ

)
− 1

)
This is the full expression for the expected absolute deviation from a fixed point d for a Gaussian

random variable Y ∼ N(µ, σ2).

3 Distance of a random variable to another

Now we want to compute E[|A−B|] where A ∼ N(µA, σ
2
A) and B ∼ N(µB , σ

2
B). We’ll assume A and B

are independent random variables.
Let Z = A−B. Since A and B are independent Gaussian random variables, their difference Z is also a
Gaussian random variable and follows N(µZ , σ

2
Z) with µZ = µA − µB and σ2

Z = σ2
A + σ2

B .
We are therefore looking for

E[|A−B|] = E[|Z|]
= E[|Z − 0|]

= σZ

√
2

π
e
− (0−µZ )2

2σ2
Z + (0− µZ)

(
2Φ

(
0− µZ

σZ

)
− 1

)
c.f. previous result

= σZ

√
2

π
e
− µ2

Z
2σ2

Z + µZ

(
2Φ

(
µZ

σZ

)
− 1

)
remove zeros

And by substituting µZ and σZ we get:

E[|A−B|] = e
− (µA−µB)2

2(σ2
A

+σ2
B

) + (µA − µB)

(
2Φ

(
µA − µB√
σ2
A + σ2

B

)
− 1

)

4 The multidimensional case

Now, each sample is multidimensional, meaning that it is made of several means, each one coming with
it’s specific standard deviation. Thus, computing the distance between two samples requires a bit more
effort. So let’s consider that A and B are multidimensional Gaussian vectors where each pair of coordi-
nates is independent, and the two vectors themselves are independent, then we can calculate E[|A−B|].
We use the absolute value norm for |.| (which allow us to consider each dimension separately). This choice
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is motivated by the fact that using the Euclidean norm here would make the calculation significantly more
complex as it involves the expectation of the square root of a sum of squared Gaussian variables, which
leads to a non-central Chi distribution.

Let A = (A1, . . . , AD) and B = (B1, . . . , BD) to be independent Gaussian random variables. Assume
Ai ∼ N(µAi

, σ2
Ai
) and Bi ∼ N(µBi , σ

2
Bi
). Let Zi = Ai−Bi. Then Zi ∼ N(µZi , σ

2
Zi
) with µZi = µAi−µBi

and σ2
Zi

= σ2
Ai

+ σ2
Bi
.

We can use linearity of expectation:

E [|A−B|] = E

[
D∑
i=1

|Ai −Bi|

]

=

D∑
i=1

E [|Ai −Bi|]

=

D∑
i=1

√σ2
Ai

+ σ2
Bi

√
2

π
e
− (µAi

−µBi)
2

2(σ2
Ai

+σ2
Bi
) + (µAi

− µBi
)

2Φ

 µAi − µBi√
σ2
Ai

+ σ2
Bi

− 1




Therefore, the final distance we were looking for is given by the expectation expectation:

E [|A−B|] =
D∑
i=1

√σ2
Ai

+ σ2
Bi

√
2

π
e
− (µAi

−µBi)
2

2(σ2
Ai

+σ2
Bi
) + (µAi − µBi)

2Φ

 µAi − µBi√
σ2
Ai

+ σ2
Bi

− 1




5 Applications

This custom distance metric offers several advantages over traditional distance measures for KNN in
specific contexts. First, it explicitly accounts for the variability within each feature of a sample. This
is particularly valuable when data points are not fixed values but statistical estimates. By considering
the spread of distributions, the metric can be more robust to noise or small variations in the mean, as it
understands the inherent ”fuzziness” of the data points. And for datasets where the variance itself carries
important information (e.g., distinguishing between stable and volatile measurements), this metric can
provide better discriminative power than methods that only compare means.
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